I M.Tech - II Semester – Regular Examinations - JULY - 2023

AI AND ML OF MECHANICAL SYSTEMS (MACHINE DESIGN)

Duration: 3 hours

Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Discuss the general frame work of Industry	L2	CO1	7 M				
		4.0 and its Needs.							
	b)	Explain how can you implement Industry	L2	CO1	8 M				
		4.0?							
		OR							
2	a)	Define centre limit theorem. Explain briefly	L2	CO1	7 M				
		the steps in deriving the centre limit							
		theorem.							
	b)	Write briefly about correlation vs regression	L2	CO1	8 M				
		with its types?							
UNIT-II									
3	a)	State and explain the algorithm for Breath	L2	CO2	8 M				
		first search with an example.							
	b)	What is uniform cost search algorithm?	L2	CO2	7 M				
		Explain it with an example.							
	OR								

4	a)	State and explain the algorithm for Depth	L2	CO2	7 M			
		first search with an example.						
	b)	Develop A* algorithm for AI applications.	L2	CO2	8 M			
UNIT-III								
5	a)	Cluster the following eight points (with (x,	L3	CO3	10 M			
		y) representing locations) into three clusters:						
		A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8),						
		A5(7, 5), A6(6, 4), A7(1, 2), A8(4, 9)						
		Initial cluster centres are:						
		A1(2, 10), A4(5, 8) and A7(1, 2).						
		The distance function between two points						
		$a = (x_1, y_1)$ and $b = (x_2, y_2)$ is defined as						
		$P(a, b) = x_2 - x_1 + y_2 - y_1 $						
		Use K-Means Algorithm to find the three						
		cluster centres after the second iteration.						
	b)	Write briefly about various non-linear	L2	CO3	5 M			
		regression models?						
OR								
6	a)	Explain the difference between pooling and	L2	CO3	7 M			
		Padding Operations.						
	b)	Explain the different layers in Conventional	L2	CO3	8 M			
		neural Network?						
UNIT-IV								
7	a)	Explain the Digital logic "Exclusive-OR"	L2	CO4	8 M			
		and "Exclusive-NOR" briefly and draw the						
		circuit.						
	b)	Prove the statement $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow p)$ is a	L3	CO4	7 M			
		tautology.						

OR								
8	a)	Prove the statement $(p \lor q) \land (\neg p) \land (\neg q)$ is	L3	CO4	7 M			
		a Contradiction.						
	b)	Convert the following sentence into	L3	CO4	8 M			
		predicate logic and then its clause form						
		i. The-humidity-is-high						
		ii. If the-sky-is-cloudy then it-will-rain						
		iii. If the-humidity-is-high then it-is-hot.						
		iv. It-is-not-hot.						
		v. the-sky-is-cloudy						